Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death

نویسندگان

  • Viravuth P. Yin
  • Carl S. Thummel
  • Arash Bashirullah
چکیده

A pulse of the steroid hormone ecdysone triggers the destruction of larval salivary glands during Drosophila metamorphosis through a transcriptional cascade that converges on reaper (rpr) and head involution defective (hid) induction, resulting in caspase activation and cell death. We identify the CREB binding protein (CBP) transcriptional cofactor as essential for salivary gland cell death. We show that CBP acts 1 d before the onset of metamorphosis in apparent response to a mid-third instar ecdysone pulse, when CBP is necessary and sufficient for down-regulation of the Drosophila inhibitor of apoptosis 1 (DIAP1). It is only after DIAP1 levels are reduced that salivary glands become competent to die through rpr/hid-mediated cell death. Before this time, high levels of DIAP1 block salivary gland cell death, even in the presence of ectopic rpr expression. This study shows that naturally occurring changes in inhibitor of apoptosis levels can be critical for regulating cell death during development. It also provides a molecular mechanism for the acquisition of competence in steroid signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Cytotoxicity of Cisplatin in SK-MEL 28 Melanoma Cells upon Down-Regulation of Melanoma Inhibitor of Apoptosis Protein

Background: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. Methods: Based on the conclusion that ML-IAP expression contribu...

متن کامل

A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila.

The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been fu...

متن کامل

Kinetics of cell death triggered photothermally using folate-conjugated gold nanoparticles and various laser irradiation conditions in cancer cells

Introduction: In this study, we explore in detail cell-specific targeting efficacy of nano-photo-thermal therapy (NPTT) method and the resulting responses that are induced by variable laser intensities and exposure times in cancer cells to induce selective apoptosis. We delineate the synthesis of a high-yielding synthetic F-AuNPs by tailoring the surface of gold nanoparticles ...

متن کامل

Cytotoxic and Pro-Apoptotic Effects of Honey Bee Venom and Chrysin on Human Ovarian Cancer Cells

Background: The anti-cancer effects of honey bee venom (BV) and chrysin might open a new window for treatment of chemo-resistant cancers. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV and chrysin on A2780cp cistplatin- resistant human ovarian cancer cells. Methods: As per the study objectives, A2780cp cells were categorized to 4 groups: 3 experiment groups (treat...

متن کامل

A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis.

The steroid hormone ecdysone signals the stage-specific programmed cell death of the larval salivary glands during Drosophila metamorphosis. This response is preceded by an ecdysone-triggered switch in gene expression in which the diap2 death inhibitor is repressed and the reaper (rpr) and head involution defective (hid) death activators are induced. Here we show that rpr is induced directly by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2007